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Abstract
We employ the self-consistent local density approximation and the microscopic Hartree–Fock
theory to investigate the quantum Hall pseudospin ferromagnets at the Landau levels degenerate
regime of a single quantum well with two-subbands filled. We carry out a detailed calculation
of the pseudospin anisotropy energy using real experimental parameters and obtain the phase
diagrams that would be accessed experimentally by changing the electron density and the bias
voltage. We find that an easy-plane and easy-axis quantum Hall pseudospin ferromagnet can
form at total filling factors ν = 3 and ν = 4, respectively, which are consistent with
experimental observation. Our study provides some insight into the symmetry of the ground
state and may help in understanding the underlying mechanism.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The two-dimensional electron gas in a strong magnetic field
with multi-fold degeneracy has attracted considerable and
continuous interest in recent years [1]. Besides the anisotropic
phases at half-filling factor reported in recent years, for
instance, stripes [2, 3], anisotropic Fermi liquids [4], liquid
crystalline phases [5, 6], etc, there is another class of broken
symmetry states with pseudospin anisotropy in the multi-
component quantum Hall system. In a multi-component
quantum Hall system, the electron states are labeled as
Landau levels (LLs) with different layer [7], subband [8–10],
valley [11], orbital and spin indices. When multiple LLs are
tuned to degeneracy either by charge density or magnetic field,
electron–electron interactions become prominent and lead to
fruitful competing orders and broken symmetry states. Among
these systems, a single quantum well with two-subbands
occupied [8–10] is an ideal laboratory to investigate the above
interesting issues. Recent transport measurement has shown
evidence of the formation of quantum Hall ferromagnets of
pseudospins, where the pseudospin represents the subband

degree of freedom. The quantum Hall pseudospin ferromagnet
(QHPFs) can either be easy-axis or easy-plane anisotropy,
depending on the details of LL crossing configurations [8, 9].
Although a number of interesting phenomena have been
exploited experimentally in this system [9, 10, 12–15],
systematic theoretical work is lacking.

In this paper we give the theoretical framework of
the two-subband quantum Hall system and calculate the
pseudospin anisotropy energy using real sample parameters in
experiments [9, 12, 13]. The results show the ground states at
total filling factor ν = 3 and 4 are expected to be easy-plane
and easy-axis QHPFs, respectively, which are consistent with
the experimental observation. As we will discuss in this paper,
the gate bias voltage, which affects the spatial distributions of
the wavefunctions of the two subbands, plays an important role
in the formation of easy-plane or easy-axis QHPFs.

2. Hartree–Fock theory of two-subband system

The pseudospin ferromagnet has been best illustrated in the
bilayer quantum Hall system at total filling factor ν = 1,
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Figure 1. (a) The experimental measured longitudinal resistance Rxx

in the gate voltage (Vg)—perpendicular magnetic field (B⊥) diagram
at filling factor ν = 3, 4, 5 of a 24 nm wide GaAs/AlGaAs quantum
well [9, 12, 13]. (b) Schematic drawing of the crossing between
different subband, orbital and spin indices Landau levels at four
corresponding points marked by A, B, C, D in (a). The red dot-dash
lines indicate the Fermi levels at filling factors ν = 3, 4, 5.

where the pseudospin represents the layer degree of
freedom [16–19]. Here we apply the pseudospin language to
describe a two-subband two-dimensional electron system, in
which the LLs are labeled as |(ξ, n, s)〉, where ξ = S/A is
the first/second subband (in the non-biased quantum well, also
called symmetry/antisymmetry subband) index, n = 0, 1, . . .
is Landau level in-plane orbit radius quantum number, and
s = ↑,↓ represents real spin. When two LLs are brought close
to degeneracy but still sufficiently far from other LLs, one of
them can be regarded as pseudospin up (σ = ⇑) and the other
as pseudospin down (σ = ⇓).

In a series of experimental work [9, 12, 13], the
observed square structure demonstrates the opening gaps of
the easy-plane or easy-axis pseudospin ferromagnetic states,
respectively at the level crossing points of B, D and A, C,
as depicted in figure 1(a). Here point A corresponds to
the degeneracy point of |(S, 1,↓)〉 and |(A, 0,↑)〉, point B
corresponds to that of |(S, 1,↑)〉 and |(A, 0,↑)〉, point C
corresponds to that of |(S, 1,↑)〉 and |(A, 0,↓)〉, and point D
corresponds to that of |(S, 1,↓)〉 and |(A, 0,↓)〉, as illustrated
schematically in the Landau level fan diagram figure 1(b).
Then we can denote |(S, 1,↑)〉 as pseudospin up (σ = ⇑) and
|(A, 0,↑)〉 as pseudospin down (σ = ⇓) at filling factor ν = 3.
At filling factor ν = 4, we denote |(S, 1,↓)〉 or |(S, 1,↑)〉
as pseudospin up (σ = ⇑) and |(A, 0,↑)〉 or |(A, 0,↓)〉 as
pseudospin down (σ = ⇓).

The many-body Hamiltonian for crossing Landau level
electrons in two-subband system has the following form:

H =
∑

σ1,σ2,k

c†
σ1kh0

σ1σ2
cσ2k + 1

2

∑

σ1,σ2,σ
′
1,σ

′
2

k1,k2,k′
1,k

′
2

c†
σ1k1

c†
σ2k2

cσ ′
2k′

2
cσ ′

1k′
1

× 〈σ1k1, σ2k2|V |σ ′
1k ′

1, σ
′
2k ′

2〉, (1)

where c†
σ,k creates the single-particle state ψσ,k(
r) which

contains the growth direction subband wavefunction λξ (z) and
the in-plane LL wavefunction Ln,s,k(x, y):

ψσ,k(
r) = λξ (z)Ln,s,k(x, y), (2)

k is the wavevector label, h0 is the single-particle energy
including the external bias potential, tunneling gap, cyclotron,
and Zeeman energies, and V is the 2D Coulomb interaction.
While pseudospin up and pseudospin down LLs are
degenerate, but the number of electrons is not enough to fill all
the two LLs, electrons will stay in a broken symmetry ground
state. Actually, the state electrons choose a linear combination
of two pseudospin LLs which minimizes the system total
energy. Typically, the many-body ground state can be written
as follows:

|�[m̂]〉 =
Nφ∏

k=1

c†
m̂,k |0〉, (3)

where c†
m̂,k creates the single-particle state oriented in a

certain unit vector m̂ = (sin θ cos ϕ, sin θ sinϕ, cos θ) with
wavefunction:

ψm̂,k(
r) = cos

(
θ

2

)
ψ⇑,k(
r)+ sin

(
θ

2

)
eiϕψ⇓,k(
r). (4)

Before further calculation, there are some issues that may
need to be clarified. Firstly, there is some essential similarity
between the two-subband system and bilayer system (double
quantum well) [18, 19] from the viewpoint of pseudospin
theory. That is why all the pseudospin language theory
used in bilayer systems [18] can be applied directly to the
two-subband system as shown in this paper. Secondly,
since the wavefunction of the first and second subband are
spatially located in the same well, direct spatial coupling
between the two sets of Landau levels can potentially give
rise to a correlation different from the spatially separated
cases. Also the barrier in a single quantum well is soft,
originating from Coulomb repulsion. As a result of this
softness, the tunneling gap can not be treated as an one-
body field acting on the pseudospin levels but will depend
on the pseudospin orientation in the ground state [20]. Thus
in the present work we have to use the self-consistent local
density approximation (LDA) for the calculation of the growth
direction subband wavefunction to account for mixing of
higher electrical subbands in any sample geometry. Thirdly, in
a similar study [21] the pseudospin (representing the LL index
degree of freedom) anisotropy is driven by the coincidence
of two different Landau levels at large magnetic field tilting
angles, which is not possibly consistent with our study in zero
in-plane magnetic field.
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Figure 2. Phase diagram of Uzz − Uxx (unit: e2/εl0) at filling factor (a) ν = 3 and (b) ν = 4. In the Uzz − Uxx < 0 (left/blue) region the
easy-axis QHPF is energetically favorable while in the Uzz − Uxx > 0 (right/red) region, the easy-plane QHPF is favorable. Black lines in
each figure labeled by Uxx = Uzz show the critical positions where a quantum phase transition from easy-axis to easy-plane QHPF occurs.
The three stars in these two figures correspond to the ν = 3 and 4 crossing points measured in the experiments (see points B, A, C in
figure 1) [9, 12].

Then the Hartree–Fock energy of the system can be
obtained as the following:

EHF(m̂) ≡ 〈�[m̂]|H |�[m̂]〉
Nφ

= −
∑

i=x,y,z

(
Ei − 1

2U1,i − 1
2 Ui,1

)
mi

+ 1
2

∑

i, j=x,y,z

Ui, j mi m j . (5)

Whether the ground state is easy-axis or easy-plane only
depends on the quadratic coefficient in the pseudospin
magnetization mi (i.e. the pseudospin anisotropy energy Uxx ,
Uyy and Uzz):

Ui j = 1

4

∫
d2 
q
(2π)2

vi j(0)− 1

4

∫
d2 
q
(2π)2

vi j(
q). (6)

The first 
q = 0 term in equation (6) is the Hartree term and
the second term is the Fock term. vi j (
q) can be expanded to
the sum of several pseudospin matrix elements vσ ′

1,σ
′
2,σ1,σ2(
q),

which are products of the subband and the in-plane parts. If
Uzz < Uxx = Uyy , the system is in easy-axis QHPF, which
means the pseudospin magnetization m̂ is aligned either up or
down; and if Uzz > Uxx = Uyy , the system is in easy-plane
QHPF, which is a coherent superposition of the two pseudospin
LLs.

3. Calculation of the growth direction subband
wavefunction

Since the in-plane LL wavefunction can be obtained
analytically, we numerically calculate the growth direction (z
direction) subband wavefunction λξ (z) in equation (2) using
self-consistent LDA [22] at zero in-plane magnetic field. In
the self-consistent LDA method, wavefunction λ(z) is given
by the Schrödinger equation:
(

− 1

2m∗
∂2

∂z2
+ Vb(z)+ Vgate(z)+ Vxc(z)+ VH(z)

)
λi (z)

= εiλi (z). (7)

Here m∗ is the effective electron mass in GaAs, Vb corresponds
to the conduction band discontinuity, Vgate is the bias potential
caused by the difference of front and back gate voltages |�Vg|,
Vxc refers to the exchange–correlation potential related to the
electron charge distribution n(z) (we use the form of Vxc given
by Hedin and Lundqvist [23]). The Hartree term VH due to
electrostatic potential is given in the Poisson equation:

VH(z) = −2πe2

ε

∫
dz′|z − z′|n(z ′). (8)

The subband energies εξ , wavefunctions λξ (z) and the
electron charge distributions nξ (z) of both subbands can be
calculated by solving the Schrödinger equation (7) and the
Poisson equation (8) simultaneously [24].

4. Phase diagram of quantum Hall pseudospin
ferromagnet

Taking the unit of energy as e2/εlB (lB is the magnetic length),
we calculate the pseudospin anisotropy energy Uxx , Uyy and
Uzz at filling factor ν = 3 and 4. The experimental parameters
we use are from a single wide (24 nm) GaAs/AlGaAs quantum
well, with a global top gate approximately 350 nm away
from the center of the quantum well. The total density of
the sample, which is proportional to the gate voltage in a
certain range, is about 8.0 × 10−11 cm−2 at bias gate voltage
�Vg = 0 V [9, 12, 13]. At total filling factor ν = 3,
Uxx ≡ Uyy = −0.370 < Uzz = 0.017, so the system will
stay in an easy-plane QHPF. At one degenerate point of total
filling factor ν = 4, Uxx ≡ Uyy = 0 > Uzz = −0.1266, and at
the other degenerate point Uxx ≡ Uyy = 0 > Uzz = −0.1293.
The two energy differences of Uzz − Uxx at ν = 4 indicate the
easy-axis QHPF ground states.

To illustrate the evolution from easy-axis QHPF to easy-
plane QHPF, we calculate the phase diagrams of Uzz − Uxx

as a function of bias gate voltage |�Vg| and total density n at
filling factor ν = 3 (figure 2(a)) and ν = 4 (figure 2(b)). In
the following, for consistency, we choose e2/εl0 (l0 = 10 nm)
as the unit of energy. In the left/blue (right/red) parts of
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Figure 3. Components of anisotropy energy Uxx and Uzz versus bias
voltage |�Vg|. Except for Uxx ≡ 0 at ν = 4, all the other terms are
the same at filling factor ν = 3 and 4. UzzH and UzzF correspond to
the Hartree term and Fock term in the calculation of Uzz .

each figure (figures 2(a) and (b)), where Uzz < (>)Uxx ,
the easy-axis (easy-plane) has the lower electron interaction
energy. Along the black line at the phase boundary labeled as
Uxx = Uzz , the QHPF is isotropic. From figure 2, we find that
the anisotropy energy difference Uzz − Uxx is very sensitive
to the bias voltage |�Vg|. If we could vary the gate voltage
across the isotropic line Uxx = Uzz from left to right in a
determined density, a quantum phase transition from easy-axis
to easy-plane QHPF would happen.

In order to make a comparison of the effect of each term in
anisotropy energy equation (6), we plot them as a function of
|�Vg| at a certain density of 8.5 × 1011 cm−2 in figure 3. Note
that the dominant term in Uzz − Uxx is the Hartree term UzzH,
which is due to the electrostatic potential of electrons. It shows
that the UzzH term increases immediately with the increasing
bias voltage |�Vg|.

To examine what the role the bias voltage plays in the
determination of the easy-plane or easy-axis QHPF, we give
some results of z direction subband wavefunctions in the
figure 4. We define an effective subband separation �d =
|dS − dA| to describe the distance between the cores of the first
and second subband wavefunctions. The core of a subband
wavefunction is defined as

dS(A) =
∫

|λS(A)(z)|2z dz. (9)

The |�d| as a function of bias voltage is plotted in figure 4,
with some demonstrations of quantum well configurations and
subband wavefunctions in different bias voltages (|�Vg| =
0.0, 0.3, and 1.0 V), as well. The parameters in figure 4 are
all selected from the same density 8.5 × 1011 cm−2 in figure 3.
It is obvious that the bias gate voltage changes the effective
separation of two subbands while changing the well potential
Vgate(z) in equation (7). The larger the bias voltage added,
the farther the lowest two subbands are separated. Since at
a well separated z direction wavefunction configuration, all the
electrons near the Fermi level filling the same subband, i.e. the

Figure 4. Effective subband separation |�d| as a function of bias
gate voltage |�Vg| at the density of 8.5 × 1011 cm−2. Three insets
show the well profiles (black dashed lines) with the first (blue solid
lines) and second (red dash-dot lines) subband wavefunctions at
different bias voltage: |�Vg| = 0.0, 0.3, and 1.0 V.

same pseudospin level, will raise a larger electrostatic energy,
the easy-axis QHPF is not favorable. Thus an easy-plane
QHPF can save more Hartree energy in the larger bias voltage
situation (filling factor ν = 3 in the experiment). On the
other hand, when the potential of the quantum well maintains
a good symmetry in the small bias voltage limit (filling factor
ν = 4 in the experiment), electrons can pick up one of the two
pseudospin levels, i.e. forming the easy-axis QHPF to keep the
Hartree energy minimal and avoid the energetic penalty from
inter-subband tunneling as well. From this point of view, if
the quantum well becomes narrower, the easy-axis anisotropy
is more likely to happen due to closer a distance between two-
subband wavefunctions. This conclusion is also consistent with
the figure 5 in [18]. In their bilayer system, the easy-axis state
is more likely to form in a smaller layer separation [18]. Here
we can see how important the growth direction wavefunction
is in affecting the pseudospin orientation.

Besides the leading contribution from the Hartree term
UzzH mentioned above, there is also a minor Fock term playing
a role. The anisotropy energy Uxx or Uyy is constituted of
a Hartree part and a Fock part (see equation (6)). In our
numerical calculation, we find that the Hartree terms of Uxx

and Uyy are always zero at both ν = 3 and 4. The only non-
zero term in Uxx or Uyy is the Fock term U xxF ≡ U yyF < 0 at
filling factor ν = 3, which is due to the exchange interaction.
It implies that at filling factor ν = 4, where pseudospin up
σ = ⇑ (|(S, 1,↓)〉 or |(S, 1,↑)〉) and pseudospin down σ = ⇓
(|(A, 0,↑)〉 or |(A, 0,↓)〉) have opposite real spins, the easy-
plane anisotropy, in which the electrons stay in both subband
equally, would cost much more exchange energy. But at ν = 3
the pseudospin up σ = ⇑ (|(S, 1,↑)〉) and pseudospin down
σ = ⇓ (|(A, 0,↑)〉) have the same spin. Then there is no such
problem need to be considered. Therefore, the easy-axis QHPF
is more likely to happen at total filling factor ν = 4 than ν = 3.
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In summary, the bias gate voltage added to the sample
changes the quantum well profile in the growth direction
as well as the spatial separation of the lowest two subband
wavefunctions. For a larger bias gate voltage, the potential
of the well is much more skewed, so the two subband
wavefunctions locate on the opposite sides of the quantum well
(inset of figure 4). As a result, the Hartree energy will arise
if all the electrons stay in one narrow subband or pseudospin
level. Thus an easy-plane QHPF, in which the electrons fill the
two pseudospin levels equally, is more energetically favorable
at a large bias gate voltage (filling factor ν = 3 in the
experiment). In addition, a state with opposite real spins will
expend more exchange energy, so the easy-plane QHPF is more
easily formed at a pseudospin configuration in which the two
pseudospin level have the same real spin (filling factor ν = 3
in the experiment).

5. Conclusion

We explain the recent observation of transport measurements
in a two-subband system in terms of the unique physics
of a quantum Hall pseudospin ferromagnet. Applying a
microscopic Hartree–Fock theory, we show that the anisotropy
properties of the ground state are determined by a competition
of the electrostatic and exchange energies, unlike the novel
anisotropic states at half-filling factor [2–6]. The mean
field pseudospin theory used in this paper is able to account
quantitatively for basic characteristics of possible broken
symmetry states in a two-subband system. Close to the
quantum phase transition region (see the black line in
figure 2), fluctuations will be important [25], and including
quantum fluctuations [26] may help with a more complete
understanding. Furthermore, going beyond the Hartree–Fock
approximations used in this paper one may be able to stabilize
other many-body phases with broken symmetries, most notably
the skyrmion stripe phase [19]. These important topics will be
discussed elsewhere.
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